

FAST & UNDER TRAFFIC: CONCRETE OVERLAYS IN MICHIGAN

Unbonded Concrete overlays
Under traffic

Highways

- I-96, Ionia County, 1984 (Switched)
 - M-66 to Sunfield Rd., 7.5 in.
- US 23, Monroe County, 1984 (Switched)
 - Ida Center Rd. to M-50, 8 in.
- US 10, Bay County, 1990 (With Traffic)
 - · Bay City to Midland, 7 in.
- I-96, Ionia County, 1991 (Switched)
 - Ionia Co. to Bauer Rd., 7.5 in.

- Highways (cont.)
 - I-94, Jackson County, 1995 (Switched)
 - Jackson Co. east 9.5 mi., 7.5 in.
 - US 131, Allegan County, 1998 (With Traf.)
 - Conrail RR to 114th Ave., 7.5 in.
 - US 23, Livingston County, 1999(With Traf.)
 - Faucett Road to Genesee County Line, 8 in.
 - I-69, Branch County, 1999 (With Traf.)
 - I-94 to Eaton County Line, 7.5 in.

- Highways (cont.)
 - I-69, Eaton County, 2000 (With Traf.)
 - Eaton Co. Line to Island Hwy., 7.0 in.
 - US 131, Kent County, 2000 (With Traf.)
 - M-46 north to Cannonsville Road., 7.0 in.
 - US 23, Livingston C, 2001 (With Traf.)
 - north of I-96., 8.0 in.

- Local Roads & Streets
 - Coolidge Road, Royal Oak, 1983
 - 13 Mile to 14 Mile, 5 in.
 - Enterprise Drive, Allen Park, 1997
 - Oak wood to S. Dearborn, 6"
 - Outer Drive, Dearborn Heights, 2000
 - Ford Road to Hines, 4"

US 10, Bay County, 1990

- Bay City to Midland

Length: 6.0 mi.

Contractor: Interstate

Hwy. Const.

Thickness: 7 in.

Joint Spacing: 15' Random

Interlayer: 1 in. AC

U.S. 10 Concrete Overlay

- Westbound Concrete Overlay
 - 12 miles Completed in 11 Weeks
 - 14 days Ahead of Schedule
 - Incentive: \$210,000 @ \$15,000 per day
- Eastbound Rubblize & AC Overlay
 - 5 1/2 Months Completion Time

US 10 Overlay Today

- Asphalt at 10 years
 - Truck lane Micro surface at year 6
 - Mill and fill entire surface at year 9
- Concrete at 10 years
 - Section in good shape

- I-96, Ionia County, 1991
 - Ionia Co. Line to Bauer Rd.

Length: 6.8 mi.

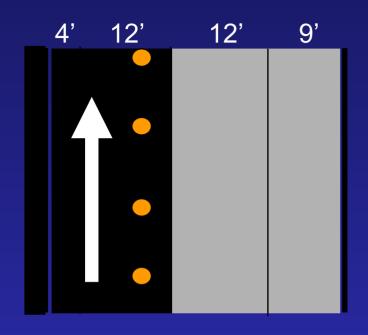
Contractor: Ajax Paving

Thickness: 7.5 in.

Joint Spacing: 27'

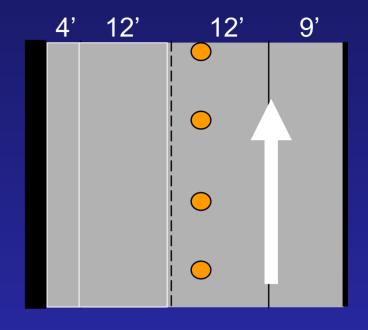
Interlayer: 1 in. AC

Interstate I-96


- Concrete Overlay 7.5"
 - Clinton County, 1991
 - Cost: \$1,034,000 per mile
 - Three months
- Rubblize w/Asphalt Overlay 6"
 - Ingham County, 1992-93
 - Cost: \$1,437,500 per mile
 - Two Seasons

39% Difference in Initial Cost

US 131 Concrete Overlay

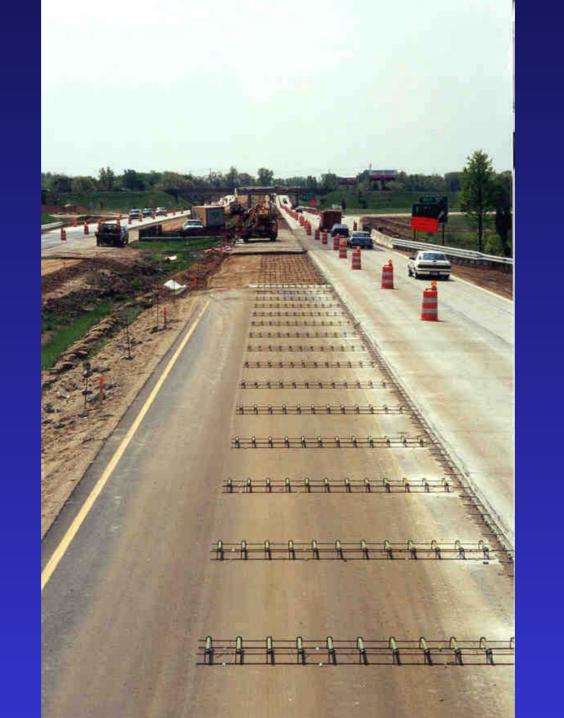

- 4.5 miles divided highway
- Concrete Overlay All Lanes + Shoulders
- Completed in 44 days

Traffic Management


Stage I

- Prepare Shoulders
- Place AC Interlayer
- Take Outside Lane & Shoulder
- Pave Concrete Overlay
- Open to Traffic

Stage II


- Take Inside Lane & Shoulder
- Pave Concrete Overlay
- Open to Traffic



- I-96 Asphalt Overlay
 - 14.06 kilometers
 - Original Concrete 36 Yrs Old
 - 8-10 Year Fix
 - \$14.52 Million \$1.03 Million/km

Overall Cost to Taxpayers

\$103,000 per kilometer per year

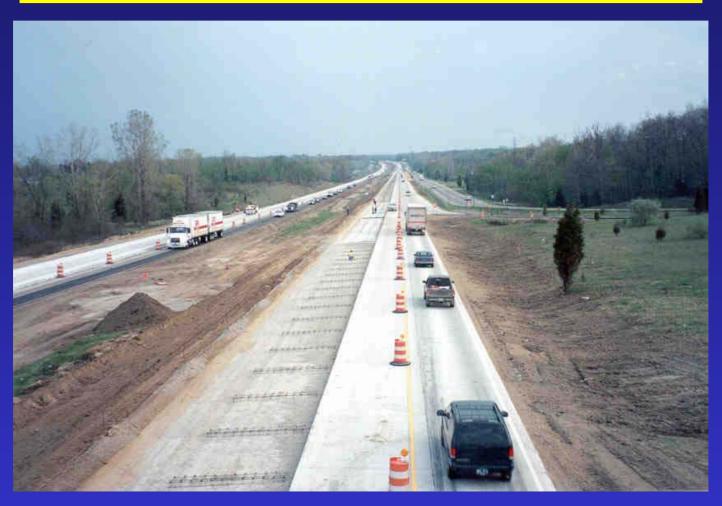
- I-69 Rubblize/Asphalt Overlay
 - 9.61 kilometers
 - Original Concrete 30 Yrs Old
 - 13 Year Fix
 - \$11.4 Million (w/o Bridges) -\$1.19 Million/km

Overall Cost to Taxpayers \$91,538 per kilometer per year

- US 131 Concrete Overlay
 - 6.6 kilometers
 - Original Concrete 38 Years Old
 - \$6.18 Million (w/o bridge) -\$0.94 Million/k

Overall Cost to Taxpayers

\$37,440 per kilometer per year


Concrete Overlay

64% Savings vs Asphalt Overlay

59% Savings Over Rubblize/Asphalt

Concrete Lower Initial Cost

US 23 Concrete Overlay

I-69 Overlay

I-69 Overlay

MDOT's Current Traffic Management Plan for Overlays

- 11 Overlays in Michigan since 1984
 - All Projects ... 2 Lane Freeways
 - 7 Under Traffic
 - All of the Last 6
 - Since LCCA used to select material
 - 4 Traffic Crossed Over (No Traffic)
 - Two way traffic on other side

Major Issues in Michigan

- Interferences between Traffic & Workers & Paving Equipment
- Stage Construction Occupying the same space with traffic
- Potential Traffic Rollover Problems
- Batch Truck Movements in and out of traffic
- Ride quality harder to obtain high numbers
- More conflicts between paving operation and traffic
- Much more time for traffic to get thru project (while paving)
- Basic safety concerns

Interferences between Traffic & Workers & Paving Equipment (cont)

- Stage I pavement available to traffic is at the minimum (no more than 11ft)
- Drivers tend to give additional space to the construction operation and personnel
- Some Vehicles have dropped a wheel onto the 1ft gravel shoulder or beyond during stage I paving
 - Out of control incidents have occurred
 - Vehicles into ditch or overcorrecting onto work operation
 - No workers have been hit

Interferences between Traffic & Workers & Paving Equipment

- Phase II Construction Operation
 - Traffic is compressed to edge of the slab for entire length of project
 - To provide room for all construction operations that take place to the side (both at the paver and behind the paver)
 - Paver, Float Operator, Clean Up Crew, Inspection Personnel

 \mathbf{F}

Interferences between Traffic & Workers & Paving Equipment (cont)

- Stage I Construction Operation
 - Median widened by 4ft
 - Less lateral space available during this operation
 - Same construction operations as stage II
 - Float operator, inspector, and paver crew still needs to fit within the new edge of slab and the white edge line
 - Note float man watching for traffic to extend float

Rollover Problems (cont)

Factors

- Vehicle Traffic is confined to outer edge
- Potential Soft Shoulder exists at edge
- Motorists may not be aware of shoulder situation
- Height of overlay adds to steepness of the preexisting sideslope
- Stage I tight available space for construction operations places construction personnel uncomfortably close to the vehicle stream

Rollover Problems (cont)

- Corrections on future projects
 - Additional outside width of paved temporary shoulders
 - Vertical panels placed off the edge of temp shoulder to mark the drop off
 - Calcium Chloride treated shoulders to improve stability during runoff event
 - Other treatments possible (Cement /Lime/ Other)

Next Steps for MDOT

- Debated internally at MDOT & FHWA (Nothing official)
- Take a hard look at present issues and try to solve them without getting rid of the concept of paving under traffic.
- Addition of other innovations such as warranties and alternative bids may have some effect on the outcome.

Bottom Line - Maintain the Overall System Health

- # 1. Use sound engineering Logic to choose the correct fix.
- #2. Then and only then look at traffic impact.

The Customer is Speaking

Are We Listening?

EPIC-MRA Statewide Poll

Purpose

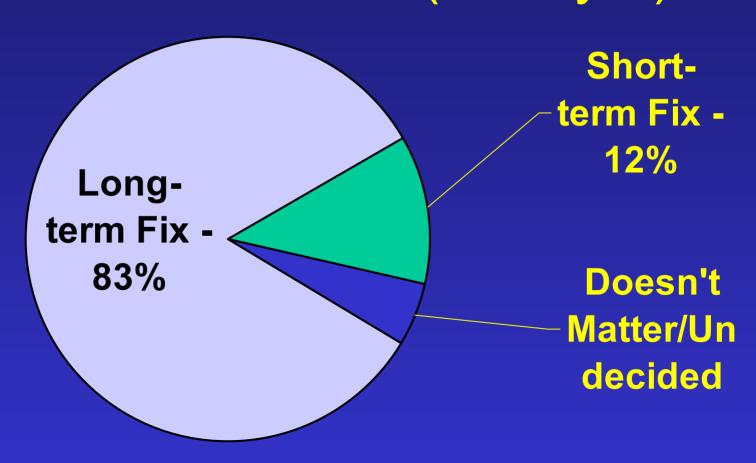
To assess general public attitude about lane closures for road construction

How often have you encountered construction zones in the last year?

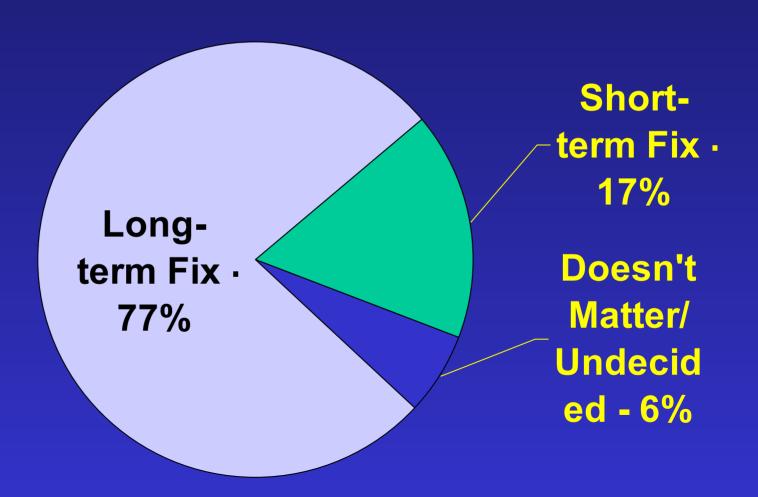
- 31% Every time you drive
- 34% Almost all the time
- 23% About 50% of the time
- 9% Not very often
- 1% Never
- 2% Undecided/Don't know

88% at

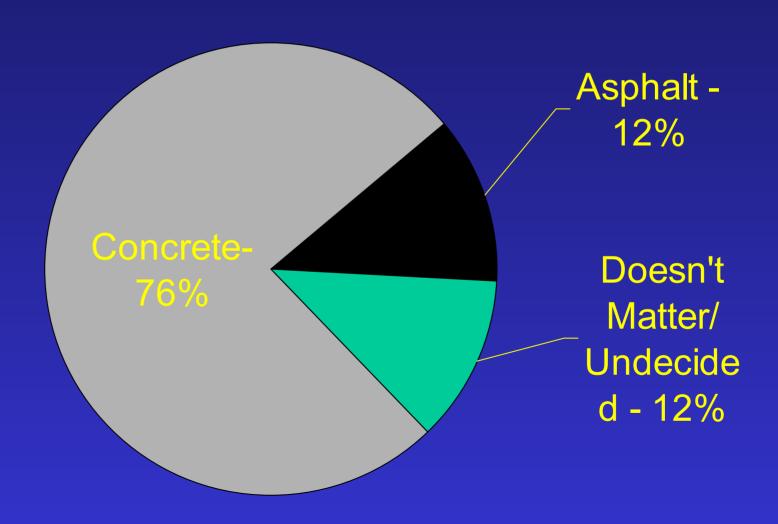
→ Least 1/2

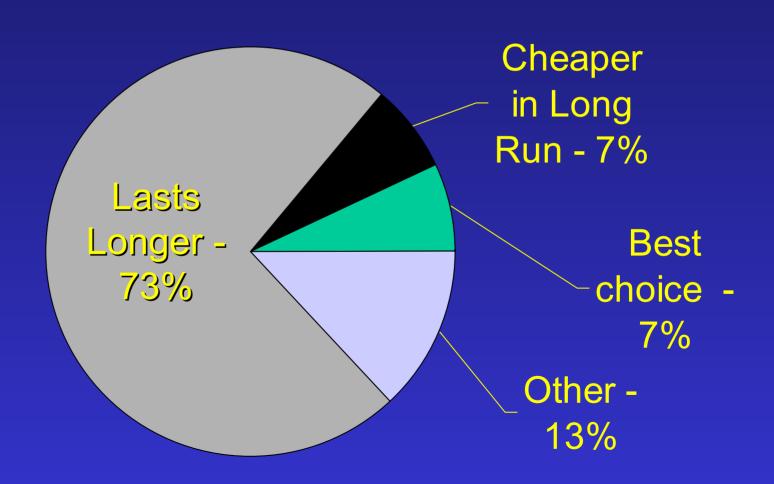

Time

Definitions


- Long-term Fix
 - Lasts 30-35 years
 - Costs more initially
 - 2-3 months of lane closures
- Short-term Fix
 - Lasts 8-10 years
 - Costs less initially
 - Minimal delays in daytime hours

RESULTS


Long-term Fix (30-35 yrs) vs Short-term Fix (8-10 yrs)


Long-term Fix (2-3 mo. closure) vs Short-term Fix (minimal closure)

Which Do You Prefer?

Why Did You Choose Concrete?

Minimizing Motorist Impact

Get In,
Do It Right,
Get Out,
Stay Out

THANK YOU!

